362 research outputs found

    GALFIT-CORSAIR: implementing the core-Sersic model into GALFIT

    Full text link
    We introduce GALFIT-CORSAIR: a publicly available, fully retro-compatible modification of the 2D fitting software GALFIT (v.3) which adds an implementation of the core-Sersic model. We demonstrate the software by fitting the images of NGC 5557 and NGC 5813, which have been previously identified as core-Sersic galaxies by their 1D radial light profiles. These two examples are representative of different dust obscuration conditions, and of bulge/disk decomposition. To perform the analysis, we obtained deep Hubble Legacy Archive (HLA) mosaics in the F555W filter (~V-band). We successfully reproduce the results of the previous 1D analysis, modulo the intrinsic differences between the 1D and the 2D fitting procedures. The code and the analysis procedure described here have been developed for the first coherent 2D analysis of a sample of core-Sersic galaxies, which will be presented in a forth-coming paper. As the 2D analysis provides better constraining on multi-component fitting, and is fully seeing-corrected, it will yield complementary constraints on the missing mass in depleted galaxy cores.Comment: Accepted for publication in PASP; A binary version of GALFIT-CORSAIR is publicly available at http://astronomy.swin.edu.au/~pbonfini/galfit-corsair

    Spectroscopy of the bright optical counterparts of X-ray sources in the direction of M 31. II

    Full text link
    A recent survey of the Local Group spiral galaxy M 31 with XMM-Newton yielded a large number of X-ray sources. This is the second in a series of papers with the aim of identifying the optical counterparts of these X-ray sources. We have obtained optical spectra for 21 bright optical counterparts of 20 X-ray sources in the direction of M 31, using the 1.3-m Skinakas telescope in Crete, Greece. For 17 of the 20 X-ray sources, we have identified the optical counterpart as a normal late type star (of type F or later) in the foreground (i.e. in the Milky Way). For two more sources there were two possible optical counterparts in each case, while two more objects have X-ray properties that are not compatible with the spectral characteristics of late type non-flaring stars.Comment: Accepted for publication by Astronomy & Astrophysics (7 pages, 8 figures, and 2 tables

    Star-forming Clumps in Local Luminous Infrared Galaxies

    Get PDF
    We present HST narrowband near-infrared imaging of Paα and PaÎČ emission of 48 local luminous infrared galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey. These data allow us to measure the properties of 810 spatially resolved star-forming regions (59 nuclei and 751 extranuclear clumps) and directly compare their properties to those found in both local and high-redshift star-forming galaxies. We find that in LIRGs the star-forming clumps have radii ranging from ~90 to 900 pc and star formation rates (SFRs) of ~1 × 10⁻³ to 10 M⊙ yr⁻Âč, with median values for extranuclear clumps of 170 pc and 0.03 M⊙ yr⁻Âč. The detected star-forming clumps are young, with a median stellar age of 8.7 Myr, and have a median stellar mass of 5 × 10⁔ M ⊙. The SFRs span the range of those found in normal local star-forming galaxies to those found in high-redshift star-forming galaxies at z = 1–3. The luminosity function of the LIRG clumps has a flatter slope than found in lower-luminosity, star-forming galaxies, indicating a relative excess of luminous star-forming clumps. In order to predict the possible range of star-forming histories and gas fractions, we compare the star-forming clumps to those measured in the MassiveFIRE high-resolution cosmological simulation. The star-forming clumps in MassiveFIRE cover the same range of SFRs and sizes found in the local LIRGs and have total gas fractions that extend from 10% to 90%. If local LIRGs are similar to these simulated galaxies, we expect that future observations with ALMA will find a large range of gas fractions, and corresponding star formation efficiencies, among the star-forming clumps in LIRGs

    No evidence of sars-cov-2 circulation in rome (Italy) during the pre-pandemic period. Results of a retrospective surveillance

    Get PDF
    In March 2020, the World Health Organization (WHO) declared that the COVID-19 outbreak recorded over the previous months could be characterized as a pandemic. The first known Italian SARS-CoV-2 positive case was reported on 21 February. In some countries, cases of suspected “COVID-19-like pneumonia” had been reported earlier than those officially accepted by health authorities. This has led many investigators to check preserved biological or environmental samples to see whether the virus was detectable on dates prior to those officially stated. With regard to Italy, the results of a microbiological screening in sewage samples collected between the end of February and the beginning of April 2020 from wastewaters in Milan (Northern Italy) and Rome (Central Italy) showed presence of SARS-CoV-2. In the present study, we evaluated, by means of a standardized diagnostic method, the SARS-CoV-2 infection prevalence amongst patients affected by severe acute respiratory syndrome (SARI) in an academic hospital located in Central Italy during the period of 1 November 2019–1 March 2020. Overall, the number of emergency room (ER) visits during the investigated period was 13,843. Of these, 1208 had an influenza-like syndrome, but only 166 matched the definition of SARI as stated in the study protocol. A total of 52 SARI cases were laboratory confirmed as influenza: 26 as a type B virus, 25 as a type A, and 1 as both viruses. Although about 17% of the total sample had laboratory or radiological data compatible with COVID-19, all the nasopharyngeal swabs stored underwent SARS-CoV-2 RT-PCR and tested negative. Based on our result, it is confirmed that the COVID-19 pandemic spread did not start prior to the “official” onset in central Italy. Routine monitoring of SARI causative agents at the local level is critical for reporting epidemiologic and etiologic trends that may differ from one country to another and also among different influenza seasons. This has a practical impact on prevention and control strategies
    • 

    corecore